NORTHWESTERN UNIV EVANSTON IL DEPT OF ELECTRICAL ENG—ETC F/6 9/2

SELF-METRIC SOFTWARE. VOLUME II. A HANDBOOKs PART 1. LOGICAL RI==ETC(U)

APR 80 S S YAUr J S COLLOFELLOr C HSIEH F30602-16-C-0!9
RADC=TR=80=138-VOL=2

1.0 Mz jizs
=15
= Lk =

[= B
= |

|) EY K

t

MICROCOPY RESOLUTION TEST CHART

—— e S

P Meae

JOE!I P. HUSS
Acting Chief, Plans Office

- your ddrm Bas changed or if you wish to be removed from the RADC
umiling list, or if the addrespe¢ is mo longer employed by your organisa-
m plesse notify RADC (IS1S), Griffiss AFB NY 13441. This wilil mut

B mwmm a current mailing list. ' '

i

' : 6 not raturn “this copy. "lc:g.tu or destroj.

j/&\

SECURITY CL.ASSIFICATION OF THIS PAGE (When Dlla‘Enund)‘

UNCLASSIFIED

REPORT DOCUMENTATION PAGE BEFORE COMPL oINS RM

PRT NUMBER Lz GOVT ACCESSION NO.[3. RECIQIENT'S CATALOG NUMBER
4 :Z

S RADCFTR-80-138, Vol IT (of thret) QD -G-080

Fr——prere-rare: -RERBLOO.CONERED
SELF-METRIC_SOFTWARE * \ZO\W‘Y\ e N ’Final echnical Reget,

A Handbooks Part I, Logical Ripple Effect Au —
Analysis e 3G. REPERT NUMBE

- — N/A

‘_“*T__Z—-‘ 8. CONTRACT OR GRANT NUMBER(s)
Stephen S. /Yau F - -
James S. Lollofello @ﬁwg@‘z 76-9 ’03?3)

Chung- Chu/Hsieh

N NAME AND ADDRESS 10. PROGRAM ELEMEN YFROJECT TASK

Northwestern University, Department of AREA & WORK UNITNUMBE
Electrical Engineering & Computer Science | 627Q2F -
Evanston IL. 60201 ° , 7&)] s581p218 ﬁoé
1. CONTROLLING OFFICE NAME AND ADDRESS “0 ~ DR

Rome Air Development Center (ISIS) /O/ Apr@d l’8£f/
Griffiss AFB NY 13441 WGES
mn‘_om__"__? & ADDRESS(H! different from Controlling Olfice) | 15. SECURITY CLASS. (of thia report)

Same (_/ / y ' UNCLASSIFIED

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 2. if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Rocco F. Iuorno (ISIS)

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)
Software maintenance process, logical ripple effect analysis, technique,

handbook, lexical analysis and tracing, block and module error character-
istics, intramodule and intermodule error flows.

0. ABSTRACT (Continue on reverge side If necessary and identify by block number)

This handbook consists of two parts on ripple effect analysis for large-
scale software maintenance. In Part 1, a ripple effect analysis tech-
nique for software maintenance from the logical or functional perspectiv;L
is presented. In a separate volume, the Part II of the handbook, a ripp
effect analysis technique for software maintenance from the performance
perspective is presented. The purpose of this handbook is to present

DD '52:",, 1473 =oimion oF 1 NOV 85 13 cesoLETE UNCLASSIFIED Cont 'd)

SECURITY CLASSIFICATION OF THIS PAGE (W (When Dete hw

Approved for public release; distribution unlimited. '1'

et
ripple effect analysis techniques to assist software maintenance person- r'/ e

/i

Kl

-

PP Sy

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Item 20 (Cont'd)

nel to do a better job in large~scale software maintenance. The
material presented in this handbook is organized in three levels. At
the first level, the software maintenance process is described and the
need for effective ripple effect analysis techniques for large-scale
software maintenance is given. The capabilities and restrictions of
the logical ripple effect analysis technique, as well as how this tech-

the logical ripple effect analysis technique is outlined in two phases:
the lexical analysis phase and the tracing phase. At the third level,
the steps of the logical ripple effect analysis technique are given

in detail. However, the detailed theory behind this technique is not
presented in this handbook, but contained in other reports.

nique is interfaced with the user, are presented. At the second level, -

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'® PAGE(When Data Entered)

e ke S T

Table of Contents

List of FAgUYes . . . « ¢ ¢ o « o « o o o ¢ s o o « o o » o o« 1i
I meCTI m L] [) L) - L] L] . L) . L] L] . L) L] . L] L] L] L] L] L] » L] . L] 1

CAPABILITIES AND RESTRICTIONS OF THE LOGICAL RIPPLE
EFFECT ANALYSIS TECHNIQUE . . , . . ¢ ¢ o o ¢ o o o « ¢ o« o o o 5

USER INTERFACE ¢ ® o ¢ 8 e o ¢ © & o & o & & & * + o s s s+ o+ 2 6

OUTLINE OF LOGICAL RIPPLE EFFECT ANALYSIS TECHNIQUE
Lexical Analysis Ph88e . . 4 o 4 o ¢ ¢ s o o 2 s o ¢ s o ¢ ¢

Logical Characterization of the Program . . . « « o o « ¢ o o o
Outline of the Procedure to Perform Lexical Analysis 11

B

Tracing Phase . o « o o « o o o o o o o o o o o s o o o o o o+ o 12

Logical Ripple Effect Tracing . « « « « o o o « « o o « o « « « 12
Outline of the Procedure to Perform Ripple Effect Tracing . . . 14

DESCRIPTION OF EACH STEP OF THE TECHNIQUE 14
Description of Lexical Analysis Steps . « « « + o o« o « ¢« « o « 14

R, L e Ty S G YR PP B ety

Lexical Analysis Step 1 . &« v ¢ ¢ 4 o ¢ « ¢ o o ¢ s o« o o o o+ 15

P&S S 1 e & ¢ & e o & 6 s e e & 8 & & O & * 2 6 ° 9 ¢ o s o o o 15
Pass 2 ® @ o & o & 8 6 6 ¢ e e O o+ & & o © o & e+ s e s e o+ s 16

Lexical Analysis Step 2 o « ¢« &« « + o « o o o ¢ ¢ o o o s s o « 19

Derivation of Module Precedence Oxrdering . . . « ¢« « « ¢« « . « 19
Derivation of Error Characteristics for a Module 20
Update of Block Error Characteristics . . « « ¢ ¢ ¢ o o o« o » o 23

Description of Tracing Steps of Logical Ripple Effect
An‘lysi's * L] . L] L] L] L] L] L] . . L4 - . . L . L . L] . L] . L] L] . L] za

Tracing Step 1 of Logical Ripple Effect Analysis 24
Tracing Step 2 of Logical Ripple Effect Analysis 26
Tracing Step 3 of Logical Ripple Effect Analysis 26

Intramodule Error F1ow . « v ¢« + o o o o o o s o o« o s ¢« s « o 26
Intermodule Exror F1ow . . v & ¢« ¢ o « « » o ¢ o« a o« s o« o« « o 28

Tracing Step 4 of Logical Ripple Effect Analysis 32
Tracing Step 5 of Logical Ripple Effect Analysis 33

mm CES ¢« & 8 & & & & & T T S & o B B B s B * s S + s+ T s 3 3

J
¢
List of Figures :
Page E
Figure 1. A recent estimate of the life cycle cost for large- f
scale software [9] . . . ¢ 4 ¢ ¢« ¢ 4 4o 6 o 6 s 4 s e o s o 2 f
Figure 2, A software maintenance process with the ripple effect %
analysis techniques . . « v ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 0 0 o 0 o o 3 Q
Figure 3. 1Illustration of the iaputs and outputs of the logical é
ripple effect analysis technique « ¢ ¢ ¢ o ¢« o o & & 5
Figure 4. User interface level of the logical ripple effect
analysis technique . o ¢« « ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o s o o 8

e

—~ . p— ——ir

- P
aillliacn, -

-—

i1

1.0 Introduction

The amount of the maintenance effort in the life cycle of large-scale
software has been large and continuously increasing. Software maintenance is
a very broad activity that includes error corrections, enhancements of capa-
bilities, deletion of obsolete capabilities, and minor modifications in mis-
sion requirements [1-6]. Optimization is also a form of maintenance requiring
the modification of code within individual modules, and possibly the structure
of the complete system in order to improve its efficiency [7], The software
life cycle has been analyzed to determine the relative magnitude of this main-
tenance activity with respect to other software development phases [8,9]. The
results of one study [9] are illustrated in Figure 1, and indicate that the
cost of maintenance is 67% of the total cost for the life cycle of large-scale
software., It is obvious that in order to reduqe the high cost of software,
the most effective approach is to understand the nature of software mainte-
nance and develop effective maintenance techniques. This requires a clear
understanding of what is meant by the maintainability of a software system.

The maintainability of a software system can be defined as a measure of
the ease of making modifications to the software. 1In software, the effect of
a modification may not be local to the location of the modification, but may
also affect other portions of the system, There is a ripple effect from the
location of the modification to the other parts of the system that are
affected by the modification [1,10-12]. One aspect of this ripple effect is
logical in nature. It involves identifying program areas which require addi-
tional maintenance activity to insure that consistency with the initial change.
Another aspect of this ripple effect concerns the performance of the system,
It involves analyzing changes to one program area which may affect the per-
formance of other program areas. Ripple effect analysis techniques are needed
for analyzing this ripple effect from both a logical and a performance per-
spective. This is required since a large-scale program usually has both func-
tional and performance requirements. The ripple effect analysis techniques
needed are put into perspective within the maintenance process in Figure 2.

As illustrated, the techniques are applied after the maintenance personnel
have generated one or more maintenance proposals,

This handbook is divided into two parts with each part describing one of
the ripple effect analysis techniques., Part I describes the logical ripple

integration
test module test

e iy it g —— -

maintenance 672

Figure 1, A recent estimate of the life cycle
cost for large-scale software (9]

Determine
Maintenance
Objective

i)

Understand
Program

—5

Generate a

Maintenance

Proposal and
Make the Initial

Modification
K) = - v
Apply Logical Apply Performance
Ripple Effect Ripple Effect
Analysis Analysis
Technique Technique
< K 7

Ripple
Effect

No

Tolerable
?

Complete the Modifi-
cation by Accommodating
Ripple Effect

Testing

No ass

Testing
?

Yes

Figure 2, A software maintenance process with
the ripple effect analysis techniques

effect analysis technique. Part II describes the performance ripple effect

analysis technique [13]. Part I is completely independent of Part II since
logical ripple effect analysis can be applied without performance ripple
effect analysis. Part 11 references Part 1 since performance ripple effect
analysis should be utilized in conjunction with logical ripple effect analy-
sis,

The logical ripple effect analysis technique presented in this part of
the handbook can be a powerful tool for maintenance persomnel. Figure 3
expands the logical ripple effect analysis box in Figure 2 to illustrate the
inputs and outputs of the technique. The outputs of the technique can help
maintenance personnel understand the scope of effect of their changes on the
program. They can also aid them in determining which parts of the program
mu;t be checked for consistency. The net results of applying the logical

ripple effect analysis technique are:
* Smoother implementation of program modifications

* Reduction of program errors introduced in the program
due to modifications

* Reduction of program structure degradation as a consequence
of program modification due to an increased understanding
of the implications of the modification

* Decrease of the growth rate of program complexity due to
program modification

* Extension of overall program's operating life

Another significant product of the logical ripple effect analysis techni-
que is the computation of the complexity of a proposed program modification.
One such figure has been proposed which reflects the amount of work involved
in performing maintenance and, thus, provides a standard on which comparisons

of modifications can be made [1]. However, further research is required for

estimating such a figure.

R i

e i M
T N, R o it 2

e e e, B AN PR L W AN

Crng s L - 2. a:

Modules and blocks

may be affected by
the modification
Logical Ripple

Effect Analysis f
Technique N :

Source code

Proposed N Figure for the i

modification A complexity of the E

program modification

Figure 3. 1Illustration of the inputs and outputs
of the logical ripple effect analysis
technique

The objective of Part I of this handbook is to describe the logical
ripple effect analysis technique in a clear and concise manner. Section 2
describes the capabilities and restrictions of the technique. Section 3 pre-
sents the user level interface to this technique as it is perceived to be when
fully implemented. Section 4 outlines the required processing necessary to

accomplish the functions described in Section 3. The remainder of the sections

deal with a description of each of the processing steps. This handbook does
not contain implementation details or verification of the algorithms described.
Detailed information of this type i1s discussed in other reports [12,14,15].

2.0 Capabilities and Restrictions of the Logical Ripple Effect Analysis

Technique
The logical ripple effect analysis technique described in this part of

the handbook is language independent and applicable to existing programs as
well as newly implemented programs incorporating state-of-the-art design tech-
niques., The technique does not provide maintenance personnel with proposals

for modifying the program, Instead, the technique is applied after the ;

[PV .

sy it L,

T R

- s R s (e AR L - s e s+ 1 A i i S < . abAR Wi SNy <y i i Mgt m i ok e ANy 3% it S I R e agui— =~ L.

maintenance personnel have generated a number of possible maintenance propo-
sals.
The current version of the logical ripple effect analysis technique also

makes the following assumptions about the program to be analyzed.

1. The program does not contain any recursive procedures.

In the current version of the logical ripple effect analysis technique,
it is assumed that the module invocation graph is acyclic. Hence, recursion
is not allowed. Programming languages such as JOVIAL, FORTRAN, COBOL, do not
have recursion. Nevertheless, we will eliminate this restriction in our
future research,

2. Statement names and module names cannot be passed between modules.

A module is defined to be a separately invokable piece of the software
syétem having single entry and single exit points. If statement names and
module names can be passed between modules, then the invocated module may have
multiple entry or multiple exit points, However, current programming practices
try to avoid this feature because it leads to bad programming style. Thus, it
can be justified that statement names and module names should not be passed

between modules.

Another limitation of the current version of the logical ripple effect
analysis technique is that the technique is oriented towards tracing data flow,
Thus, the technique provides limited information concerning logical ripple
effect if the initial modification changes only the control flow of the pro-
gram. Future research will be focﬁsed on covering the ripple effect analysis

due to initial modifications on control flow.

3.0 User Interface

The success of any software technique is dependent upon its ease of use.
The technique must be simple to understand and apply to the problem. This
implies a high degree of automation in which the user interfaces with the
technique at a very high level, and the technique is transparent to the user
on how it operates,

The logical ripple effect analysis technique has been developed with these
objectives. When the technique is fully automated, it is very easily applied

i~ — e sy

o A B i, Vet e Vo - B T T T T o R R T VT, .. P o i ML e S S i

to the problem. Although the technique is very sophisticated, the maintenance

personnel applying the technique need only be concerned with its output. The

logical ripple effect analysis technique is applied in the following three
simple steps which are illustrated in Figure 4.

Step 1: Maintenance personnel utilize a change management system (CMS) to
modify the program. The CMS consists of a text editor and a data base. The
CMS records all of the changes in the program automatically in the data base. :
Thus, a record of the maintenance activity is created without special assis-

tance from the maintenance personnel.

Step 2: After the modification of the program is complete, the maintenance

personnel execute the lexical analysis package of the logical ripple effect

analysis technique.

Step 3: Upon completion of the lexical analysis step, the maintenance person-

nel execute the tracing package of the logical ripple effect analysis techni-

que. The tracing package utilizes the data base of program changes created by !
the CMS and maps these changes into the characterization of the program created
by the lexical analysis step. It then traces logical ripple effect throughout
the program. The output of the tracing package is a display of the code of

the blocks affected by logical ripple effect. Another significant output of
the tracing stage which is still undergoing research is the computation of a
figure for the complexity of the proposed modification. This figure will
reflect the amount of programmer's effort required to incorporate a particular
program modification and take care of all its logical ripple effect. This
figure can be used as a basis upon which various program modifications can be
evaluated in terms of programmer's effort.

The logical ripple effect analysis technique, thus, provides maintenance

personnel with valuable information about the maintenance activity without
interfering with the maintenance process itself or requiring additional input

from the maintenance personnel.

4.0 Outline of Logical Ripple Effect Analysis Technique

In this section, we will outline the processing steps involved with the

lexical analysis and tracing phases of the logical ripple effect technique,

- —

*anbjuyoal sysfieue 309339 atddya
1821801 2y3 jo yeaa] 20®BJ193UT 198Q) ‘4 aanByg

uoyies}jypom weadoad t |

3yl jo L3yxojdwoo -w ! ' :oﬂuwuawvo:
24yl 103 a2an8yy /{h/ pasodoxd
~
: ' N 98eyoeg wo184g
i Mms_uwm §—] s}s{yvuy Juawafeuny @
uyoea]
! 1ed}xa] aduey)

uoyledyyFpom 3yl . .
£q pa3dazje aq Aew |) apod adanog
831201q pue saynpol)

anbyuyoal sysdieuy 309339 o1dd1y fesj807q

AP R 20 MK 1S e

Salry o i

4.1 Lexical Analysis Phase
The first phase of the logical ripple effect analysis technique is the

lexical analysis phase. In this phase, the program is analyzed with respect
to the proposed modification and a characterization of the program is compiled
and saved in a data base. The characterization of the program contains infor-
mation necessary for tracing logical ripple effect. A description of the

logical information needed for this characterization will now be presented.

4.1.1 Logical Characterization of the Program

The main purpose of the logical ripple effect analysis is to aid the
maintenance personnel to better understand the scope of effect of his changes
on the software system and identify program areas which must be checked to
insure their logical consistency with the initial changes. To accomplish this,
a modular large-scale software system is modeled by the set of modules and the
interdependency between the modules. A program module is defined to be a
separately invokable piece of the software system having single entry and
single exit points. If a program module does not satisfy the single entry and
single exit condition, it can easily be modified to satisfy this condition by
using reference flags to refer to different entry points and different exit
points. Thus, a module can correspond to a SUBROUTINE or PROCEDURE, The
interdependencies between the modules can be represented by a directed graph,
the invocation graph £, where each node in R corresponds to one and only one
module, and each edge denotes that the module corresponding to the tail of the
edge invokes the module corresponding to the head of the edge at least once.

A program module is further partitioned into program blocks to reduce its
complexity and enhance the information on the program structure,

A program biock is a maximal sequence of computer statements having the
property that each time when any statement in the sequence is executed, all are
executed; except under the condition that the execution flow is transferred to
another module, or information is input from or output onto a file, or a looping
condition is defined in a DO type statement. When a module invocation is
encountered, a sequence of three blocks may be assigned for this module invo-
cation. An input statement would initiate a new block which contains the

input statement. An output statement would terminate the current block which

contains the output statement. A DO type statement which defines a looping

T A e AL e N R AR ST L MY S I8t i N s B S AR kgt 1 S e A i T E ey A

condition constitutes a block itself, However, each program block has one
single entry point and one single exit point.

A program module is modeled by the program graph associated with this
module. A program graph is a directed graph where each node represents one
and only one program block in the module and each edge represents the execu-
tion flow from the exit poiﬂt of the tail node to the entry point of the head
node,

In order to trace the logical ripple effect, it is necessary to charac-
terize each block to reflect how potential errors can propagate within the
block. A data usage is a data item which is referenced without change in an

expression or part of an expression. A data definition is a data item whose

value is modified in an expression or part of an expression. A control defi-
nition is an item assigned to a control directive to reflect the control con-
dition, e.g. a control definition is assigned to an IF statement and the data
items in the predicate are said to define the control definition. The poten~
tial propagator set for each block is defined to be the set of all usages in

the block which can propagate potential errors. The source capable set for
each block is defined to contain all definitions within this block which can
cause potential errors to exist within this block, A flow mapping for each

block is defined to associate each element in the potential propagator set
with the elements in the source capable set such that potential errors can
propagate from the potential propagator to the source capable definitions.
The source capable set, the potential propagator set, and the flow mapping of
a block together constitute the block's error charécteristics.

Tracing of logical ripple effect also requires the characterization of
each module to model the potential error behavior between the module and its
surrounding enviromment, This characterization is referred to as the module's

error characteristics. The error characteristics for a module is represented

by the module level potential propagator set, the module level source capable
set and the module level flow mapping. The elements in the module level
potential propagator set can cause potential errors to propagate within this

module. The elements in the module level source capable set represent poten-

tial errors which can flow from this module or remainwithin the module. The mod-
ule level flow mapping represents how potential errors can propagate from the mod-

ule level potential propagators to the module level source capable definitions.

10

A module must have its error characteristics defined after the error
characteristics of the modules that are invokable by this module have been
defined; otherwise, the error characteristics of the module cannot be com-
pletely specified. Thus, the order in which the module error characteristics
are derived for all the modules in the software system is very important. A.

precedence ordering among the modules is defined to be a partial orderimg such

that if a module invokes another module, the former is assigned a higher pre-
cedence than that of the latter. Therefore, the error characteristics for all
modules should be defined starting from the module with lowest precedence, i.e.
a module that does not invoke any modules, and then proceeding to the modules
with higher precedences according to the precedence ordering.

Thus, lexical analysis to produce a logical characterization of the pro-
gram requires that for each module in the software system, the module's text
is statically scanned to produce a program graph based on program blocks. The
error flow properties of each program block represented by the potential propa-
gator set, the source capable set and the flow mapping are also characterized.
In addition, the module invocation graph is constructed to denote that a block
in a module invokes another module. This process is dependent of the high
level language in which the software system being analyzed is written. This

process is referred to as Text-Level Lexical Analysis and different Text

Analyzers have to be developed for different programming languages. A text is
defined to be an entity that is compiled independently. As an example, a text
may be a compool, a main program, or a subprogram in JOVIAL,

After all the texts in the software system have been processed by the
Text Analyzer, the precedence ordering among modules will be derived. Then
according to this precedence ordering, the module error characteristics for
each module will be derived., At the same time, the error characteristic sets
and flow mappings for those blocks which invoke some modules will be updated.
This process if referred to as the System-Level Lexical Analysis and is inde-

pendent of the programming language in which the.software system is written.

4.1,2 Outline of the Procedure to Perform Lexical Analysis

The processing steps involved with lexical analysis can be summarized as

follows:

L R T e AL e v L

Step 1: Perform Text-Level Lexical Analysis to produce a program graph based
on program blocks, compute the error flow propertieé of each program block,
and construct the invocation graph.

Step 2: Perform System-Level Lexical Analysis to derive the precedence order-
ing among modules, compute the module error characteristic sets, and update

the block error characteristic sets,

4.2 Tracing Phase

The second phase of the logical ripple effect analysis technique consists
of tracing the logical changes, i.e., the logical ripple effect which occurs as
a consequence of the maintenance changes. The input to the technique in this
phase includes all of the information about the program collected and stored

in a data base during the lexical analysis phase.

4.2.1 Logical Ripple Effect Tracing

Tracing logical ripple effect is a very difficult problem and requires
identification of error sources which will be utilized as starting points for

the tracing. There are two types of error sources:

Primary error sources which are all the program definitions involved in the

initial modification. Inconsistency of these program definitions can propa-

gate from the primary error sources to other program areas.

Secondary error sources which are data or control definitions implicated

through the usage of primary error sources and must be examined to insure that

" they are not inconsistent with the data items involved in the initial change.

The error sources that may flow from a block are represented by the propagation
error source set for the block.

The algorithm to compute logical ripple effect operates upon each module
characterization to trace error sources from their points of definition to
their exit points, The algorithm is initialized with a set of modules and
their primary error sources involved in the initial change. For each module
initially involved in the modification, the algorithm traces the intiamodule
flow of potential errors from the primary error sources through the various
program blocks. When the flow of error sources stabilizes, the algorithm

applies a block identification criterion to determine which blocks within the

12

Pe—

ot b ot L e i B et i

module must be examined to insure that they are not logically inconsistent
with the initial change. The block identification criterion is used ta dis-
tinguish between blocks which are affected by the error flow and those which
are not. A block is affected by error flow and, thus, may require further
maintenance if the intersection of the block'sAptopagation error source set and
its source capable set is not empty. After the block identification is com- -
plete, a propagation criterion is applied to this module to define those error
sources which flow from this module to those modules invoked by this module,
and to modules which invoke this module. Error flow across module boundaries
constitutes intermodule error flow. For each module affected by intermodule
error flow, the algorithm traces intramodule error flow in the same manner as
described above to determine the net effect that the propagated error sources
have on their respective modules. The algorithm is executed in this manner un-
til intermodule error flow stabilizes. An intermediate result obtained at the
point is the set of modules which are affected by the intermodule error flow

of error sources created by the primary error sources involved in the change. .

Then, a logical ripple effect criterion is applied to each module affected by

intermodule error flow to determine i{f the module requires additional mainte-
nance activity. The logical ripple effect criterion consists of examining the
intersection of the propagation error source set and the source capable set for
every block in the module, If the intersection is empty for each block in the
module which is not specified for & module invocation, (i.e. the module is not
affected by logical ripple effect because it does not cause inconsistency with-
in itself), then the module requires no further maintenance activity. However,
if there exists at least one block such that the intersection of the propaga-
tion error source set and the source capable set is not empty, then the module
is affected by logical ripple effect.

A block elimination criterion is also applied to each module affected by

intermodule error flow to identify the program blocks and their error sources
which require additional maintenance. The block elimination criterion dis-
tinguishes between those blocks which are affected by the logical ripple effect
and those which only contribute to the error flow. If a module is not affected
by the logical ripple effect, then all blocks in the module and all blocks
assigned for invocations to this module require no further maintenance activity

since the error sources do not disturb this module's consistency.

13

4.2,2 oQutline of the Procedure to Perform Ripple Effect Tracing
In this section, the processing steps for tracing logical ripple effect
will be presented in the required order.

Step 1: Utilizing the change management system data base and the characteriza-
tion of the program produced during.lexical analysis, identify the set of
blocks and their primary error sources initially involved in the change for
each module in the program.

Step 2: Form a set M composed of modules initially involved in the change.
Step 3: Compute the error flow of set ﬁ Let the set of modules affected by
the error flow be Wffand the set of blocks and their error sources within each
module WG which contributes to error flow be Lj' .
Step 4: Apply the logical ripple effect criterion to each element in 1 . Let
all modules 1n.WF.which require additional maintenance due to the logical
ripple effect criterion form the set WP.

Step 5: Apply the block elimination criterion to each element in Wf; Let all
blocks and their error sources within Mj which require additional maintenance
activity form the set LjR. The maintenance personnel must check all of the
blocks in LjR for each module in.Wﬁ'to insure that they are consistent with the

initial change.

5.0 Description of Each Step of the Technique

In this section, a description of each of the steps involved in the lexi-
cal analysis and tracing phases of the logical ripple effect analysis will be
provided. The description will be informal and concise. The processing steps
will be described at a level which is language independent. Informal algo-
rithms and approaches used in these steps will also be presented, but the
actual implementation is language dependent and hence, omitted.

5.1 Description of Lexical Analysis Steps

In this section, a description will be presented for each of the lexical
analysis steps outlined in Section 4. Section 5.2 will contain a description
of each of the steps in the tracing phase which has also been outlined in
Section 4.

14

ik

5.1.1 Lexical Analysis Step 1
This step performs the Text-Level Lexical Analysis on each text. to derive

the program graphs, module invocation graph, block error characteristics, etc.
Since most programming languages allow several names to refer to the same
memory location and also several memory locations referred by the same name,
we have to resolve these address conflicts first in order to correctly trace
the error flow within the software system. Therefore, this process is further

decomposed into two passes,

5.1,1,1 Pass 1

The Pass 1 scans the text and performs the following main functions: to
establish symbol tables and alias relations, to resolve address conflicts and
to identify the global and passed parameter sets of modules defined within this
text.

There are two types of address conflicts which must be resolved. One is

called symbolic aliasing which arises when several names refer to the same

memory location. The other is called the address aliasing which occurs when

several memory locations may be referred by the same name.

Most programming languages permit the programmer to declare data items
with the same name, but different scopes of effect. This capability can intro-
duce address aliasing. One way to resolve this problem is to keep track of the
scopes of effect for all data names by appropriate symbol tables or stacks,
such as a common symbol table or program symbol stack. When a data name is
referenced in the program, the data item with the scope of effect on this
reference can be resolved from the symbol tables or stacks following the name
resolution rules associated with the language. Then, the reference is relabel-
led to reflect which data item has the applicable scope of effect, e.g. by
prefixing the name with a prefix which denotes the module where the data item
having the scope of effect for the reference was declared.

Some programming languages allow the user to declare several data names
for the same data item, The EQUIVALENCE statement'in FORTRAN is an example,
This capability can introduce one form of symbolic aliasing. This kind of
symbolic aliases can be identified by seeking out the syntactic constructs
used by each language to define the alias relation. Once identified, this
kind of symbolic aliasing can be resolved by substituting only one elemeant in

ko

Rl il

e TR RTREERAY AT OO e

the alias grouping for all other elements in the group throughout the scope of

effect of the aliases,

Thus, in Pass 1, the symbol tables and alias relations must be estab-
lished and used to resolve the address conflicts., In addition, the global and
passed parameter sets of each module defined within the text can be identified
as a by-product of the name resolution. The formal parameters, if there are
any, appearing in the module declaration in their prefixed form are put into
the passed parameter set of the module. The data items referenced within the
module which have scopes of effect over the module are in the proper form
which can reflect the respective scopes of effect of the data items and put
into the global parameter set of the module.

A temporary file is written by Pass 1 as the card image of the text
except that all aliases have been resolved and relabelled.

5.1.1.2 Ppass 2

The Pass 2 scans the temporary file written by Pass 1 and performs the
following main functions: to derive the program graphs for modules defined in
the text, to identify blocks and their error characteristics, and to derive
the module invocation graph. Note that Pass 2 can be skipped for texts which
contain no executable statements and are used merely for declaration purpose,
such as compools in JOVIAL, '

For each programming language, a set of block segmentation conditions
must be identified according to the syntactic construct of the language.
These block segmentation conditions should identify all control flow changes
other than those in sequential control flow, e.g. conditional statements,
jumps, loops, etc., and some special conditions for error flow analysis, e.g.
module invocatidn, data declaration, input and output statements. Associated
with the block segmentation conditions are the predecessor-successor identifi-
cation conditions which are used to build the predecessor-successor relation-
ship among the blocks identified by the block segmentation conditions. As an
example, when an unconditional GOTO statement which branches to a labelled
statement is encountered, the block segmentation conditions should identify
this and terminate the current block while the predecessor-successor identifi-
cation conditions should specify that the current block is a predecessor of
the block which contains the statement bearing the label referred by the GOTO

16

Lo R B s L iy am A TP I R ettt o Al Krdne 5l seoontfot R - Lt s SRR] ey re e e ST B . S W U

.
\
i‘
!»
!
[
1
i

statement. The block segmentation conditions and predecessor-successor identi-
fication conditions partition a module into program blocks and deriQe the pro-
gram graph of the module in terms of the blocks and the predecessor-successor
relationship among the blocks within the module,

In order to identify the error characteristics of blocks, the schemes to
identify the usages and definitions from all types of statements, intrinsic
functions and procedures must be identified according to the syntactic con-
struct of the language. As an example, the simple data item appearing on the
left-hand side of an assignment operator will be identified as a definition,
and the data item(s) appearing on the right-hand side of the assignment opera-
tor will be identified as usage(s).

A block's error characteristics are represented by the potential propaga-
tor set, the source capable set, and the flow mapping of the block. A block
error characteristics identification scheme has been developed to process the
usages and definitions identified within a block to determine how they should
be added to the potential propagator set and source capable set, respectively,
and how the flow mapping should be constructed. A discussion of the scheme

can be found in (12].
Pass 2 scans through the temporary file writter by Pass 1. Once a new
module scope is entered, an entry block with empty error charactistics will be

specified for the module. When one or more of the block segmentation condi-
tions are satisfied, the current block will be terminated and a new block is

built with appropriate predecessor-successor relationship specified by the
respective predecessor-successor identification conditions., The usages and
definitions in a block are identified by the schemes from the statements,

intrinsic functions and procedures appearing in the block. The usages and

definitions are processed by the block error characteristics identification
scheme to construct the potential propagator set, the source capable set, and
the flow mapping of the block. At the end of the module scope, an exit block
with empty error characteristics is specified for the module. The program
graphs, the blocks and their respective error characteristics can thus be
derived. Note that the information to indicate the entry points of blocks
should be inserted and written with the temporary file which contains the text
after resolving address conflicts on an output file, Thus, the output file

can be scanned to identify the primary error sources, the blocks and modules

17

AT g

involved in the initial changes.

When a module invocation is recognized by its syntactic construct or by
name resolution, a sequence of three blocks may be assigned in the invoking
module to establish the potential error flow between the invoking and the

invoked modules, The first block in the sequence is used to construct the

potential error flow between the actual input parameters and their correspond-

ing formal input parameters. The second block in the sequence is referred to

as a module invocation block and used to represent the potential error proper-

- .

ties of the invoked module. The third block in the sequence is used to con-
struct the potential error flow between the actual output parameters and their

corresponding formal output parameters. 'J

-y

The two blocks used to construct the error flow between actual and formal
parameters are required because the parameters passed between modules can
introduce another form of symbolic aliasing. Furthermore, as far as the formal

and actual parameters are concerned, the invoked module's error characteristics

are expressed in terms of the formal parameters, while the local blocks' error
characteristics in the invoking module are expressed in terms of the actual
parameters. Thus, these two blocks are required to correctly trace the error
flow between modules and preserve the invoking module's local block character~
istics. Certainly, if the invoked module has no formal parameters, these two

blocks can be omitted. Similarly, if the invoked module is a function, the

block which is used to construct the error flow between output parameters can

be omitted.

P P

The block error characteristics of the blocks in the sequence assigned for
a module invocation are initialized as empty in Pass 2 and will be specified
later in the System-Level Lexical Analysis step after the invoked module's
error characteristics have been defined. The information about the blocks
assigned for the module invocation, the invoking module and the invoked module
for each module invocation is stored in the module invocation table which will ;
be used later in the System-Level Lexical Analysis step to update the block |
error characteristics of the blocks assigned for module invocations and in the
tracing step to compute the logical ripple effect. Furthermore, the actual
parameter list appeared in each module invocation is stored in conjunction with
the module invocation.

L e e g

i

For each module invocation, the invoking module is also spgcified as an
immediate predecessor of the invoked module in the module invocation graph
which will be used later in the System-Level Lexical Analysis step to derive
the module precedence ordering and further in the tracing step to compute the

logical ripple effect.

5.1.2 Lexical Analysis Step 2

At the beginning of this step the text-level lexical analysis has already
produced a program graph based on program blocks, computed the error flow
properties of each program block, and constructed the invocation graph. This
step performs system-level lexical analysis to derive the precedence ordering
among modules, compute the module error characteristic sets, and update the

block error characteristic sets,

5.1.2.1 Derivation of Module Precedence Ordering

The module precedence ordering is used to determine the order in which
the module error characteristics for all modules in the program are derived.
It is a partial ordering and has a one-to-one correspondence with modules in
the program. If a module invokes another module, then the former should be
assigned a higher precedence than that of the latter.

The module precedence ordering can be derived from the module invocation
graph which was created in the Text-Level Lexical Analysis stage., Recall that
the module invocation graph is completely characterized by a set, where each
element in the set consists of a module and the set of modules invoked by this
module. The module precedence ordering is represented by a set where each
element consists of a module and its precedence,

The module precedence ordering can be derived by the following algorithm:

Step 1: Initialization

Construct a module list to contain all the modules in the program. Ini-
tialize the module precedence ordering to be an empty set, Initialize a tem-
porary module list to be empty. Finally, set the precedence counter to be
zero,
Step 2: Ordering and Selection

For each module in the module 1list, search the module invocation graph to

19

D et RIS i S A bt o M i B e s i il

W B e e S

determine if the set of immediate successors of this module is empty. If it
is empty, then increment the precedence counter, add the module and the current
value of the precedence counter into the module precedence ordering set, delete
this module from the module list, and finally add the module into the temporary
module list,
Step 3: Termination

If the module list is empty, i.e. all the modules in the program have
been processed, then terminate the program.
Step 4: Selection

Select a module from the temporary module list and then delete it from
the list.
Step 5: Deletion

For each module contained in the module list, search the set of immediate
successors of the module to determine if the set contains the module selected
from the temporary module list, If it does, then delete the module selected
in Step 4 from the set of immediate successors of the module.
Step 6: Repetition

If the temporary module list becomes empty (i.e. all the modules which
were assigned precedences in Step 2 have been deleted from the sets of immedi-
ate successors of the modules which invoke these modules), then go to Step 2
to process the modules whose immediate successors have been assigned prece-
dences; otherwise, go to Step 4 to process the next module in the temporary

module list,

5.1.2.2 Derivation of Error Characteristics for a Module

The modulg's error characteristics are used to model the potential error
behavior between the module and its surrounding environment. The module's
error characteristics are represented by the module level potential propagator
set, the module level source capable set, and the module level flow mapping.
The elements in the module level potential propagator set can cause potential
errors to propagate within this module, The elements in the module level
source capable set represent potential errors which can flow from this module
or remain within the module. The module level flow mapping represents how
potential errors can propagate from the module level potential propagators to

the module level source capable definitions.

20

R

e B e AN £ - T Ao b S AL R/ A1 3 . sl s SIS il P
R T S AR b

The module can only interface with its surrounding environment via its 1
parameter list. The elements in a module's parameter list may have passed
attributes or global attributes. The passed and global parameters were iden-
i tified and stored in the passed parameter set and global parameter set,
respectively, for the module during the Text-Level Lexical Analysis.

The module's error characteristics can be algorithmically derived in 8°

R

steps:

Step_1: Augment the global parameter set of the module.

The global parameter set of the module is augmented to contain all aug-
mented global parameter sets of the modules which are immediate successors of
this module. Because a global variable may not be used in the module but may
be used in a module invoked by the module, the global variable must be added
to the parameter list of the module to preserve the local error character-
istics of the module, The parameter list of the module is augmented too by
taking the union of passed parameter set and the augmented global parameter
set of the module,

Step 2: Calculate the set of natural source capable definitions.

The elements in the set of natural source capable definitions represent
the potential error sources which can flow from this module back to an invok-
ing module. The intersection of the module's parameter list and the union of

Q all source capable sets for the blocks in the module defines the natural
source capable set.
Step 3: Calculate the potential propagator candidate set.

The elements in the potential propagator candidate set represent the ele-
ments in the module's parameter list which are suspected of propagating poten-
tial errors into the module. The intersection of the module's parameter list
and the union of all potential propagator sets for the blocks in the module
defines the potential propagator candidate set.

Step 4: Calculate the natural potential propagator set and the pseudo poten-

tial propagator set.

The elements in the natural potential propagator set represent the ele-
ments in the module's parameter list which can cause potential errors to exist
within the module and flow out of the module, The elements in the pseudo

potential propagator ser represent the elements in the module's parameter list

21

T

el s B g S 4 S G e Sl 2

350 R g 5 ot N2 R B e

which can cause potential errors to exist and remain within the module. A

potential propagator identification function is used to examine each element
in the potential propagator candidate set to determine if it can propagate
potential errors into the module. The potential propagator identification
function treats the potential propagator candidate as a primary error source
and makes it the only member of the propagation error source set for the entry
node of the module. Then, the potential propagator identification function 3
traces the error flow within the module using the intramodule error flow algo-

rithm. Finally, the propagation error source set for the exit node of the i
module is examined. Suppose that the set is not empty, i.e. the potential

propagator candidate can propagate potential errors to the elements in the set.

Then, the intersection of the natural source capable set and the propagation

error source set for the exit block of the module is examined. If the inter-

section is not empty, the potential propagator candidate can propagate poten-

tial errors to the elements in the intersection which can flow out of the 2

module and hence the potential propagator candidate is added into the natural s
potential propagator set. Otherwise, i.e., the intersection is empty, all the
error sources created by the potential propagator candidate remain within the
module and hence the potential propagator candidate is added into the pseudo
potential propagator set.

Step 5: Calculate the module level potential propagator set.

The module level potential propagator set is defined A< the set of para-
meters which can cause potential errors to exist within the module. The union
of the natural potential propagator'set and the pseudo potential propagator
set defines the module level potential propagator set.

Step 6: Calculate the pseudo source capable set.

A unique pseudo source capable definition is defined for each element in
the pseudo potential propagator set to represent the error sources which are
created by the pseudo potential propagator and remain within the module. The
existence of the pseudo source capable set is required for preservation of the
invoking module's local block error characteristics as expressed by the source
capable set and propagation error source set for the local block. Preservation
of these error characteristics insures that intramodule error flow algorithm

will correctly identify those local blocks which are affected by a modification
and invoke this module, Elements in the pseudo source capable set can be

22

arbitrarily defined in such a manner that they will not create any erroneous

secondary error sources in the invoking module.
Step 7: Calculate the module level source capable set.

The module level source capable set consists of elements in the natural
source capable set and the elements in the pseudo source capable set.
Step 8: Identify the module level flow mapping.

The module level flow mapping maps each element in the module level poten-
tial propagator set to the elements in the module level source capable set
which may be affected by the potential propagator. The elements in the natural
potential propagator set are mapped to the respective elements in the inter-
section of the natural source capable set and the propagation error source set
for the exit node of the module as identified by the potential propagator
identification function., The elements in the pseudo potential propagator set
are mapped to the respective pseudo source capable definitions identified in

Step 6.

Note that the module error characteristics for all modules in the software
system should be derived according to the module precedence ordering idemntified
in the previous section and starting from the module which has the lowest pre-

cedence.

5.1.2.3 Update of Block Error Characteristics

Recall that in Pass 2 of the Text-Level Lexical Analysis step, a sequence
of blocks is assigned for each module invocation and the error characteristic
sets for the blocks in the sequence are specified io be empty., Now, it is
necessary to update the block error characteristic sets for these blocks. For
each module invocation, the block error characteristic sets for the module
invocation block in the invoking module are updated with the respective module
error characteristics of the invoked module. That is, we assign the invoked
module's module level potential propagator set, module level source capable set
and the module level flow mapping to the potential propagator set, source
capable set and flow mapping, respectively, for the module invocation block in
the invoking module., This can easily be done in an 1mp1emeﬂtation, by changing
the pointers linking the blocks to the block error characteristics, The block
error characteristic sets for the block w%ich is used to construct the poten-

tial error flow between input parameters can be specified by treating the

23

I T —————— - TR C O VR AR v

g input actual parameters as potential propagators which can affect the corre-

sponding input formal parameters. Similarly, the block error characteristic

PEEENGVIN e K s s

sets for the block which is used to construct the potential error flow between
output parameters can be specified by treating the output formal parameters as
potential propagators which can affect the corresponding output actual para- :
meters, A formal parameter is identified to be an input formal parameter if
it 1s an element in the module level potential propagator set. A formal para-
meter is identified to be an output parameter if it is an element in the
natural source capable set for the module. The correspondence between formal
and actual parameters can be seeked out by examining the formal parameter list
of the invoked module and the actual parameter list which was stored in con-
junction with this module invocation during the Pass 2 of the Text-Level Lexi-
cal Analysis step.

B

5.2 Description of Tracing Steps of Logical Ripple Effect Analysis

In this section, a description will be presented for each of the tracing !

steps of the logical ripple effect analysis outlined in Section 4.

5.2.1 Tracing Step 1 of Logical Ripple Effect Analysis

In this step, the set of blocks and their primary error sources involved
in the change is identified for each module in the program.

A primary error source is defined to be a data or control definition which
is difectly affected or implicated by the initial modification. A directly
affected primary error source is a definition whose value or control condition]

associated with it was directly changéd by the initial modification. Impli-

cated primary error sources are required because our technique starts tracing 4
the logical ripple effect from the immediate successor blocks of the blocks ;
which are involved in the initial modification and hence the maintenance pro-

grammer has to identify the definitions affected by the intra-block error flow

within the primary error sources blocks. A definition in a primary error

sources block is implicated as a primary error source if it is defined by

direct or indirect usages of some directly affected primary error sources of

the block., Note that, after a definition was identified as a primary error

source, if it is redefined in the block without usages of any affected data

items, then the definition can no longer propagate potential errors to other

24

I" I . . W meamis T T B e e

Saa 2o s

N W n =t G R R Ty SV S s R N - . -~ . . . i o Y .

blocks, and hence should be removed from the set of primary error sources of
the block. From now on, we will assume that the implication process is always
carried out by the maintenance personnel,

Another type of complication arises when the control flow is changed due
to deletion of code. Since our technique is based on the potential error
properties of the modified program, some potential errors may not be traceable
due to the change in control flow. In order to solve this problem, the main-
tenance personnel has to specify the deleted definitions as directly affected
primary error sources for the blocks in the modified program, in which the
deleted code could transfer execution flow, These blocks of the modified
program should be specified as primary error sources blocks, In the following
discussion, it is also assumed that this type of complication is always
resolved by the maintenance personnel in case of deletion of code.

Based on the above discussion, our main emphasis here will be on how to
identify the directly affected primary error sources due to a program modifi-
cation. Note that a change, insertion, or deletion of a module invocation

requires special care. Let us consider the following modifications:

* Suppose that the data items used to define a control condition were
changed, e.g. a loop termination condition was modified. Then, the
control definition associated with this control condition is specified
as a directly affected primary error source of the block, where the
control definition is assigned.

* Suppose that a data definition was changed, added, or deleted in a
block. Then, the definition is specified as a directly affected pri-
mary error source of the block.

* Suppose that an actual parameter x was replaced by y in a module invo-
cation. If the corresponding formal parameter £ is an input parameter,
then f is specified as a primary error source of the input parameter
mappings block associated with this module invocation. If £ is an out-
put parameter, then x and y both are specified as primary error sources
of the output parameter mappings block,

* Suppose that a module invocation which invokes a newly added or an
existing module was inserted into the program. Then, the invoked

module's natural source capable definitions are specified as primary

25

|

error sources of the module invocation block associated with this newly
added module invocation.

* Suppose that a module invocation which invokes M was deleted from a
module Mj. Then, the directly affected primary error sources are Mk's
natural source capable definitions, except that the formal output para-
meters should be replaced by their corresponding actual parameters

which appeared in the deleted module invocation.

5.2.2 Tracing Step 2 of Logical Ripple Effect Analysis

In this step, the set ﬁ composed of modules initially involved in the
change can be formed directly from the result obtained in the last step
(Tracing Step 1). That is, if a module contains at least one primary error

sources block in it, then the module is added into 7.

5.2.3 Tracing Step 3 of Logical Ripple Effect Analysis

In this step, the error flow within the program is traced from the points
of definition to the exit points of the error sources. A tracing algorithm,
using the modules involved in the initial changes and identified in the last
step as a starting point, operates upon each module characterization to trace
the error flow. The intramodule and intermodule error flow models form the

basis of this tracing step.

5.2.3.1 Intramodule Error Flow

Intramodule error flow emulates the error flow between blocks in a mod-
ule, ‘

The error sources which flow out of a block are represented by the propa-
gation error source set of the block. From the propagation error source set
of an immediafe precedessor block, a tracing function is used to emulate the
error sources which may flow out of the block as a result of the incoming error
sources propagated from the immediate predecessor block., Obviously, the pri-
mary error sources identified in the block can flow out of the block. The
incoming error sources may implicate new secondary error sources in the block
or they may pass through the block. An incoming error source which is also a
potential propagator of the block can propagate errors to the elements in the
source capable set which are mapped by the potential propagator under the flow
mapping, i{.e. to the source capable definitions which are defined in the block

~ i

by direct or indirect usages of the potential propagator. Thus, the new
secondary error sources implicated by the incoming error sources can be iden-
tified as elements in the source capable set which are mapped by the elements
in the intersection of the potential propagator set of the block and the propa
gation error source set of the immediate predecessor block. An incoming error
source which is not redefined in the block can pass through the block. Hence,
the set of incoming error sources which just pass through the block can be
obtained by eliminating such incoming error sources which are also members of
the source capable set of the block, i.e. by deleting the intersection of the
source capable set of the block and the propagation error source set of the
immediate predecessor block from the propagation error source set of the
immediate predecessor block, Therefore, the tracing function emulates the
error sources which may flow out a block as the union of the primary error
sources identified in the block, the implicated new secondary error sources
and the incoming error sources propagated from the immediate predecessor block
and just passing through the block. The propagation error source set of a
block can be derived by the union of error sources obtained by applications
of the tracing function on the block for all immediate predecessors of the
block.

An algorithm, called the intramodule error flow algorithm, is used to

.trace how the errors flow from the primary error sources blocks to the blocks
in the module. It applies the tracing function on a block-immediate successor
basis to propagate errors from the initial error sources blocks to all immedi-
ate successor blocks v; of S, and then to all immediate successor blocks of
V4> etc. The tracing function is applied in this manmer as long as new
secondary error sources are created., When the flow of error sources stabil-
izes, the algorithm applies a block identification criterion to determine
which blocks within the module are affected by the creation and propagation

of secondary error sources,

The intramodule error flow algorithm can be stated as follows:

Step 1: Initialization
Initialize all propagation error source sets of the blocks in the module
to containing no errors. Define a 1list which contains primary error sources

blocks and initialize the propagation error source sets of these blocks to

27

Y ——

containing their respective primary eLror sources.
Step 2: Branch \
If the list becomes empty, i.e. th% error flow within the module has
stabilized, then go to Step 6 to perforq block identification.
Step 3: Selection 4
Select a block from the list and then delete it from the list.
Step 4: Propagation, Comparison and Update
For each immediate successor of the block selected in Step 3, apply the '
tracing function on it to produce the set of error sources which currently ¢
flows out of it. The set of error sources is then examined to see if it is
contained in the current propagation error source set of the immediate suc-
cessor block. If it is not, i.e. new secondary error sources have been impli-
cated by the error sources which currently flow out of the selected block,
then the immediate successor block is added into the list and the propagation
error source set of the immediate successor block is updated by the union of
the current propagation error source set and the set of error sources identi-
fied by the application of the tracing function.
Step 5: Repetition

Go to Step 2 to process all immediate successor blocks of a block which
will be selected from the list,
Step 6: Block Identification

The flow of error sources within the module has stabilized. Thus, the
block identification criterion is applied to each block in the module to see
if the block is affected by the creation or propagation of the error sources,
For each block, the intersection of the propagation error source set and the
source capable set is examined. 1If the intersection is empty, then the block
is not affected by the error flow because it is incapable of internally gener-
ating any secondary error source. Otherwise, the block is affected by the
error flow and the elements in the intersection represent the definitions in
the block which are affected by the error flow.
Step 7: Termination

Halt the program,

5.2.3.2 Intermodule Error Flow

The intermodule error flow emulates the flow of error sources across

28

module boundaries of the software system.

Two a priori conditions must exist before intermodule error floﬁ can
occur: 1) there exist error sources which have the capability to propagate
between two modules, 2) there exists an enabled path for error sources to
propagate between two modules,

Error sources use communication paths (e.g. passed parameter list, shared
data) and these paths are enabled at the time of a module's invocation. The
error sources can flow in both directions between two modules, The error flow
from the invoking module to the invoked module is called downward intermodule
error flow, while the error flow from the invoked module back to the invoking
module is called upward intermodule error flow.

A downward intermodule error flow criterion is used to check if the

invoking module can propagate error sources to the invoked module. The inter-
section of the propagation error source set of the module invocation block in
the invoking module and the invoked module's module level source capable set
is examined., If the intersection is not empty, i.e., there exist error sources
resulting from the intramodule error flow in the invoked module, then the
invoked module is affected by the downward intermodule error flow and the
error sources which propagate from the invoking module to the invoked module
are referred to as the downward primary error sources of the invoked module.
The downward primary error sources of the invoked module can be identified by
taking the intersection of the invoked module's module level potential propa-
gator set and the union of error sources which flow out of the immediate pre-
decessor blocks of the module invocation block in the invoking module. The
downward primary error sources will be added to the propagation error source
set of the entry block in the invoked module, and used to identify secondary
error sources that flow within the invoked module.

The upward intermodule error flow criterion is used to check if the

invoked module can propagate error sources to the invoking module. The inter-
section of the propagation error source set of the exit block in the invoked
module and the invoked module's natural source capable set is examined. If
the intersection is not empty, i.e. error sources can flow from the invoked
module as a direct result of the intramodule error flow in the invoked module,
then the invoking module is affected by the upward intermodule.error flow and

“he intersection defines the upward primary error sources of the invoking

29

ML S

v TV T TR

R aACe

Sl A S kA Mt o e S M

module, The upward primary error sources will be added to the propagation

error source set of the module invocation block in the invoking module, and
used to identify secondary error sources that flow within the invoking module,.

Ngte that the overall flow of error sources throughout the program canmot
be identi;I;d Wrthout the knowledge of both upward and downward error flows.
The upward error flow cannot be identified without the knowledge of downward
error flow. Thus, the downward error flow from a module to the modules
invoked by the modGle must be tréced before the upward error flow from the
module to the modules which invoke the module can be traced.

An algorithm, called the intermodule error flow algorithm, is used to

trace the error flow within the software system. This algorithm can be infor-

mally stated as follows:

Step 1: Initialization

Form a set, m&, to be equal to the set M which was derived in Tracing
Step 2. The set 7Il& is used to record the set of modules potentially affected
by upward intermodule error flow. Initialize another set, 772*, to be an empty
set, The set 7/(* is used to contain the modules affected by intermodule error
flow. For each module M, in the program, the propagation error source set of

]

the entry block and the set L.1 are initialized to be empty, where L.‘l consists
of the blocks in Mj affected by eerr flow and their associated error sources.
Step 2: Intermodule Error Flow Termination

1f 7Il& becomes empty, i.e. the intermodule error flow has stabilized,
then terminate, Now, the set m*,cont:ains all the modules affected by error

%
flow, and the sets L, 's of the modules in 7 contain the blocks affected by

3

error flow and their associated error sources. These sets will be used later
to compute the logical ripple effect,
Step 3: Termination of Downward Error Flow Calculation

1f 7 becomes empty, i.e, the modules which influence intermodule error
flow have all been processed, then go to Step 7 to identify the upward inter-
module error flow on the modules in m*.
Step 4: Module Selection

Select a module from ﬁ and then delete it from 7. Let Mj denote the

selected module.

30

Step 5: Intramodule Error Flow Tracing

Initialize a list to contain the primary error sources blocks in Mj’ For
each block in the 1list, initialize its propagation error source set to contain
the primary error sources in the block. Here the primary error sources may be
the error sources identified from the initial modificationm, the upward primari
error sources or the downward primary error sources. For the blocks in the
module which are not primary error sources blocks, initialize their propaga-
tion error source set to be empty. .

Apply the tracing function on a block-immediate successor block basis to
trace the intramodule error flow within Mj’ as described in the Intramodule
Exrror Flow Algorithm,

When the intramodule error flow in Mj stabilizes, apply the block identi-
fication criterion to blocks in Mj and add the blocks affected by intramodule
error flow and their associated error sources into Lj'

Step 6: Application of Downward Intermodule Error Flow Criterion

For each block contained in Lj’ search the module invocation table to see
if the block is a module invocation block, If it is, calculate the set of
error sources which currently flow into the module invocation block from its
immediate predecessor blocks by taking the union of the propagation error
source sets of the immediate predecessor blocks. Then, check if the intersec-
tion of that set and the module level potential propagator set of the invoked
module properly contains the propagation error source set of the entry block
in the invoked module, If it does, i.e. new error sources flow into the
invoked module, then add the invoked module into m* and ﬁ Furthermore, the
entry block is added into the set of primary error sources blocks of the
invoked module, while the primary error sources set of the entry block is
updated by the union of the current propagation error source set of the entry
block and the intersection derived above.

After all blocks in Lj have been examined, go to Step 3 to continue cal-
culating the net effect on the modules in MF and the modules invoked by these
modules,

Step 7: Application of Upward Intermodule Error Flow Criterion

For each module in mﬁ’ apply the upward intermodule error flow criterion.

Let Mj be a member of Wf. Calculate the intersection of the propagation error

31

oL b

source set of the exit block in Mj and the natural source capable set of Mj'

This intersection defines the upward primary error sources of Mj. I1f the
intersection is empty, i.e. no error sources currently flow from Mj’ then
examine another module in.WP. Otherwise, search the module invocation table
and add the modules which invoke Mj into M and 7R*- Furthermore, for each
module which invokes Mj’ add the blocks in the module which invoke Mj into the
set of primary error sources blocks of the module and update the sets of pri-
mary error sources of the blocks by the upward primary error sources of Mj'

After all modules in 7)(6‘ have been examined, assign 7_1(' to 771& and go to
Step 2 to identify the net effect on modules currently in Wﬁ and the modules
invoked by members in Wl&.

5.2.4 Tracing Step 4 of Logical Ripple Effect Analysis

In this step, the set of modules which are affected by logical ripple
effect, as denoted by WP, is identified from Wf; which is the set of modules
affected by the error flow. Recall that Wf was derived previously in Tracing
Step 3.

A module affected by error flow may not contribute to the logical ripple
effect if the error sources only pass through the module without disturbing
the consistency of the module. A logical ripple effect criterion is used to
check if a module is not only affected by error flow, but also by logical
ripple effect. For a module in Wf; if the intersection of the propagation
error source set and the source capable set is empty for every block in the
module which is not assigned for a module invocation, then the module is not
affected by logical ripple effect because all error sources only pass through
the module to the modules invoked by the module, Otherwise, at least one
definition in the module is affected by error flow and the module is affected
by logical ripple effect and hence requires further maintenance activity,

In this step, W} is first initialized to be empty. Then, the logical
ripple effect criterion is applied to each module in er If a module is iden-
tified as affected by logical ripple effect, then it is added into %F. After
all the modules in Wf have been examined, the set WP contains the set of
modules affected by logical ripple effect.

32

>

it S N M A o i

e bl s S pgen

5.2.5 Tracing Step 5 of Logical Ripple Effect Analysis
In this step, the set of blocks and their error sources which are affected

by logical ripple effect is identified from the set of blocks and their error
s:urces which are affected by error flow. Recall that for each module Mj in
M , the set of blocks in Mj and their error sources affected by error flow was
derived in Tracing Step 3 and denoted by Lj'

A block affected by error flow may not be affected by logical ripple
effect, A block elimination criterion is used to eliminate the blocks which
are not affected by logical ripple effect from the set of blocks which are
affected by error flow. If a module Mj in Wf.was identified in the last step
as not affected by logical ripple effect, then all blocks in Mj require no
further maintenance activity because Mj's consistency was not disturbed.
Furthermore, the blocks which are assigned in other modules for invocations to
Mj are not affected by the logical ripple effect for the same reason.

Hence, the set of modules which are only affected by error flow will be
formed first by taking the set difference of Wf.and OW* n WP), where Wf.ﬂ WP
is the set of modules affected by buth error flow and logical ripple effect.
For each module Mj in OW* -OW* n WP)), the set LjR is specified to be empty.
The set LkR is assigned the set Lk for each module Mi in WF. Then, for each

* *
module Mj in M -On N WP)L delete the blocks and their error sources which

are assigned for invocations to Mj from the respective LkR's for which Mk's

invoke Mj.

After all modules affected only by error flow have been processed, the

LjR's will contain the blocks affected by logical ripple effect and their

associated error sources. The maintenance personnel should check the blocks
and their error sources in the LjR's to insure their logical consistency with

the initial modification.

6.0 References

{1] Yau, S. S., Collofello, J. S., and MacGregor, T., "Ripple Effect Analysis
of Software Maintenance,”" Proc. of COMPSAC 78, pp. 60-65.

[2] Rye, P., Bamberger, F., Ostanek, W., Brodeur, N, and Goode, J., Software
Systems Development: A CSDL Project History, RADC-TR-77-213, pp. 33-41.

Goodenough, J. B,, and Zara, R, V,, "The Effect of Software Structure on
Software Reliability, Modifiability, and Resuability: A Case Study and
Analysis," Softech Incorporated, July 1974, p. 82.

i3

DY (-0~~~ o o o R

Il A 8 i AN ki k- S N M Y i

e

(4]

(5]

[6]

n

(8]

(2]

(10]

(11]

[12]

(13]

(14]

[15]

o

McCall, J. A., Richards, P. K., and Walters, G. F., Factors in Software
Quality, Volumes I, II, and III, General Electric Company, pp. 2-3, 3-5
7-9.

Goullon, H., Isle, R., and Lohr, K., '"Dynamic Restructuring in an Exper-
imental Operating System," Proc. Third International Conf. on Software

Engineering, 1978, pp. 295-304,

Ringland, G. and Trice, A. R.,, "Pilot Implementations of Reliable Sys-
tems," Software Practice and Experience, Vol. 8, May-June 1978,
pp. 323-339,

Yourdon, E. and Constantine, L., Structured Design, Yourdon, Inc., 1976,
p. 392,

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1973, pp. 48-59.

Zelkowitz, M. V., "Perspectives on Software Engineering,'" ACM Computing
Surveys, Vol. 10, No. 2, June 1978, pp. 197-216.

Ramamoorthy, C. V., and Ho, S. F., "Testing Large Software with Auto-
mated Software Evaluation Systems," Current Trends in Programming
Methodology, Volume II, (R. Yeh, ed.), Prentice-Hall, Inc., 1977,

pp. 112-150,

Haney, F. M., "Module Connection Analysis--A Tool for Scheduling Soft-
ware Debugging Activities," Proc. Fall Joint Computer Conf., 1972,
pp. 173-179,

Yau, S. S., "Self-Metric Software--Summary of Technical Progress," Vol I
Final Technical Report.

Yau, S. S. and Collofello, J. S., "Self-Metric Software, Vol III"--A

- Handbook: Part I1I, Performance Ripple Effect Analysis", Final Technical

Report.

Yau, S. S. and Collofello, J. S., "Performance Considerations in the
Maintenance Phase of Large-Scale Systems,' RADC-TR-79-129, June 1979.

Yau, S. S. and Collofello, J.S., "Performance Ripple Effect Analysis
for Large-Scale Software Maintenance,' RADC-TR-80-55, December 1979.

34

NEO SV

:
3
-§
»|
:

s ¥ L e PN -

i
!
!

MISSION
of
Rome Air Development Center

RADC plans and executes nesearnch, development, test and
selected acquisition programs in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppont within areas of technical competence
4is provided to ESD Prognam Offices {POs} and other ESD -
. elements. The principal technical mission areas are
; communications, electromagnetic guidance and control, sur-
, veillance of ground and aenospace objects, {ntelligence data
; collection and handling, information system technology,
| Lonospheric propagation, solid state sciences, microwave
; physics and electronic neliability, maintainability and
s compatibility.

P e

®

oCF RN

